DPP - 4 (Current Electricity)

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/55
https://youtu.be/BXhrsfhozQ0

Written Solution on Website:-

Q 1. A circuit has a section ABC as shown in figure. If the potentials at points A, B and C are V_{1}, V_{2} and V_{3} respectively. The potential at point O is?

(a) $V_{1}+V_{2}+V_{3}$
(b) $\left[\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right]\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]^{-1}$
(c) $\left[\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right]$
(d) zero

Q 2. Find the current in wire $A B$:

(a) 10 amp
(b) 12 amp
(c) 7 amp
(d) 4 amp

Q 3. Consider the circuit shown in the figure. The magnitude of current I_{3} is equal to:

(a) 5 amp
(b) 3 amp
(c) $2 a m p$
(d) $\frac{5}{6} \mathrm{amp}$

Q 4. Find the equivalent resistance of the following circuit.

(a) $\frac{15}{2} \Omega$
(b) $\frac{13}{2} \Omega$
(c) 7Ω
(d) 12Ω

Q 5. In the network shown, the equivalent resistance between P and Q is $\frac{4}{3} \Omega$. Hence the value of r is:

(a) 3Ω
(b) 4Ω
(c) 5Ω
(d) 6Ω

Q 6. The effective equivalent resistance between A and B in the figure, is?

(a) $\frac{3}{2} R$
(b) $\frac{2}{3} R$
(c) $\frac{2}{5} R$
(d) $2 R$

Q 7. For the circuit given below, calculate the equivalent resistance between the points P and Q :

(a) 3.56Ω
(b) 2.56Ω
(c) 4.86Ω
(d) 7.26Ω

Q 8. In the circuit shown in figure $R=55 \Omega$ the equivalent resistance between the point P and Q is:

(a) 30Ω
(b) 35Ω
(c) 55Ω
(d) 25Ω

Q 9. A wire of resistance R is cutinto n equal parts. These parts are then connected in parallel. The equivalent resistance of combination will be:
(a) $n R$
(b) $\frac{R}{n}$
(c) $\frac{n}{R}$
(d) $\frac{R}{n^{2}}$

Q 10. Find the equivalent resistance of the infinite ladder circuit shown in figure across terminals A and B.

(a) $\frac{3+\sqrt{33}}{2}$
(b) $\frac{3+\sqrt{35}}{2}$
(c) $\frac{2+\sqrt{35}}{3}$
(d) $\frac{2+\sqrt{33}}{3}$

Q 11. The equivalent resistance between A and B is:

(a) R
(b) $\frac{R}{2}$
(c) $2 R$
(d) none of these

Q 12. In the given electric circuit, the current flowing through 3 ohm resistor is 1 ampere. Find the voltage of the battery and the current drawn from it:

(a) $6 \mathrm{~V}, 1 \mathrm{amp}$
(b) $4 \mathrm{~V}, 1.5 \mathrm{amp}$
(c) $6 \mathrm{~V}, 1.5 \mathrm{amp}$
(d) $4 \mathrm{~V}, 1 \mathrm{amp}$

Q 13. Consider the circuit shown in the figure:

(a) the current in the 5Ω resistor is 2 A
(b) the current in the 5Ω resistor is 1 A
(c) the potential difference $V_{A}-V_{B}$ is 10 V
(d) the potential difference $V_{A}-V_{B}$ is 5 V

Q. 1 b	Q. 2 a	Q. 3 d	Q. 4 a	Q. 5 d
Q. 6 c	Q. 7 c	Q. 8 d	Q. 9 d	Q. 10 a
Q. 11 b	Q. 12 c	Q. 13 a		

