

DPP – 4 (Current Electricity)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/55

Video Solution on YouTube:-

https://youtu.be/BXhrsfhozQ0

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/52

A circuit has a section ABC as shown in figure. If the potentials at points A, B and C Q 1. are V_1 , V_2 and V_3 respectively. The potential at point O is?

(a)
$$V_1 + V_2 + V_3$$

(b)
$$\left[\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right] \left[\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right]$$

(c) $\left[\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right]$
(d) zero

(c)
$$\left[\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right]$$

Find the current in wire AB: Q 2.

- (a) 10 amp
- (c) 7 amp

- (b) 12 amp
- (d) 4 amp
- Consider the circuit shown in the figure. The magnitude of current I_3 is equal to: Q 3.

hysicsaholics

- (a) 5 *amp*
- (c) 2 amp

- (b) 3 amp
- (d) $\frac{5}{6}$ amp
- Find the equivalent resistance of the following circuit. Q 4.

- (a) $\frac{15}{2} \Omega$ (c) 7Ω
- (b) $\frac{13}{2} \Omega$ (d) 12 Ω

- In the network shown, the equivalent resistance between P and Q is $\frac{4}{3} \Omega$. Hence the Q 5. value of r is:

- (a) 3Ω
- (b) 4 Ω
- (c) 5Ω
- (d) 6Ω
- Q 6. The effective equivalent resistance between A and B in the figure, is?

- (b) $\frac{2}{3}R$
- (d) 2R

Physicsaholics

Q 7. For the circuit given below, calculate the equivalent resistance between the points P and Q:

- (a) 3.56Ω
- (c) 4.86Ω

- (b) 2.56Ω
- (d) 7.26Ω
- Q 8. In the circuit shown in figure $R = 55\Omega$ the equivalent resistance between the point P and Q is:

- (a) 30Ω
- (c) 55Ω

- (b) 35 Ω
- (d) 25Ω
- Q 9. A wire of resistance R is cut into n equal parts. These parts are then connected in parallel. The equivalent resistance of combination will be:
 - (a) *nR*

(b) $\frac{E}{a}$

 $(c)\frac{n}{R}$

- $(b) = \frac{1}{n}$ $(d) \frac{R}{n^2}$
- Q 10. Find the equivalent resistance of the infinite ladder circuit shown in figure across terminals A and B:

(a) $\frac{3+\sqrt{33}}{}$

(b) $\frac{3+\sqrt{35}}{}$

(c) $\frac{2+\sqrt{35}}{2}$

- (d) $\frac{2+\sqrt{33}}{2}$
- Q 11. The equivalent resistance between A and B is:

hysicsaholics

- (a) *R*
- (b) $\frac{R}{2}$
- (c) 2R
- (d) none of these
- Q 12. In the given electric circuit, the current flowing through 3 ohm resistor is 1 ampere. Find the voltage of the battery and the current drawn from it:

- (a) 6 V, 1 amp
- (b) 4 V, 1.5 amp
- (c) 6 V, 1.5 amp
- (d) 4 V, 1 amp
- Q 13. Consider the circuit shown in the figure:

- (a) the current in the 5Ω resistor is 2A
- (b) the current in the 5Ω resistor is 1A
- (c) the potential difference $V_A V_B$ is 10V (d) the potential difference $V_A V_B$ is 5V

Q.1 b	Q.2 a	Q.3 d	Q.4 a	Q.5 d
Q.6 c	Q.7 c	Q.8 d	Q.9 d	Q.10 a
Q.11 b	Q.12 c	Q.13 a		